Access to the full content is only available to members of institutions that have purchased access. If you belong to such an institution, please log in or find out more about how to order.


Print

Contents

Infinitary logics

DOI
10.4324/9780415249126-Y050-1
DOI: 10.4324/9780415249126-Y050-1
Version: v1,  Published online: 1998
Retrieved April 20, 2024, from https://www.rep.routledge.com/articles/thematic/infinitary-logics/v-1

Article Summary

An infinitary logic arises from ordinary first-order logic when one or more of its finitary properties is allowed to become infinite, for example, by admitting infinitely long formulas or infinitely long or infinitely branched proof figures. The need to extend first-order logic became pressing in the late 1950s when it was realized that many of the fundamental notions of mathematics cannot be expressed in first-order logic in a way that would allow for their logical analysis. Because infinitary logics often do not suffer the same limitation, they have become an essential tool in mathematical logic.

Print
Citing this article:
Buldt, Bernd. Infinitary logics, 1998, doi:10.4324/9780415249126-Y050-1. Routledge Encyclopedia of Philosophy, Taylor and Francis, https://www.rep.routledge.com/articles/thematic/infinitary-logics/v-1.
Copyright © 1998-2024 Routledge.

Related Searches

Topics