Access to the full content is only available to members of institutions that have purchased access. If you belong to such an institution, please log in or find out more about how to order.


Print
REVISED
|

Vision

DOI
10.4324/0123456789-W047-3
Versions
Published
2017
DOI: 10.4324/0123456789-W047-3
Version: v3,  Published online: 2017
Retrieved March 19, 2024, from https://www.rep.routledge.com/articles/thematic/vision/v-3

Article Summary

Why do things look to us as they do? This question, formulated by psychologist Kurt Koffka, identifies the main problematic of vision science. Consider looking at a black cat. We tend to see both the cat and its colour as the same at different times. Despite the ease with which this perception occurs, the process by which we perceive is fairly complex. The initial stimulation that gives rise to seeing, consists in a pattern of light that projects on the retina – a light-sensitive layer of the eye. The so-called ‘retinal image’ is a two-dimensional projection that does not correspond in any obvious manner to the way things look. It is not three-dimensional, coloured and shaped in a similar fashion to the objects of our experience. Indeed the light projected from objects is not just different from what we see, it is also both continuously changing and ambiguous. Because the cat moves around, the light it reflects changes from moment to moment. The cat’s projection on the retina correspondingly changes in size. We do not, however, see the cat as changing in size. We tend to see it as size-constant and uniformly coloured through time. How do we explain this constancy?

Along similar lines, the cat’s white paws cause on the retina a patch of light that differs in intensity from the rest. This patch could also be caused by a change in illumination. A black surface illuminated very brightly can look like a white surface illuminated very dimly. This means that the light hitting the retina from the paws is underdetermined – it does not uniquely specify what is present. But, again, we tend to see the paws as consistently white. We do not see them as shifting from being white to being black, but illuminated brightly. How do we explain this stability? A central aim of theories of vision is to answer these questions.

The science that attempts to address these queries is interdisciplinary. Traditionally, philosophical theories of vision have influenced psychological theories and vice versa. The collaboration between these disciplines eventually developed into what is now known as cognitive science. Cognitive science includes – in addition to philosophy and psychology – computer science, linguistics and neuroscience. Cognitive scientists aim primarily to understand the process by which we see. Philosophers are interested in this topic particularly as it connects to understanding the nature of our acquaintance with reality.

Theories of vision differ along many dimensions. Giving a full survey is not possible in this entry. One useful difference is whether a theory presumes that visual perception involves a psychological process. Psychological theories of vision hold that in achieving perception – which is itself a psychological state – the organism uses other psychological material. Opponents of psychological theories prefer to make reference to physiological, mechanical and neurophysiological explanations.

Print
Citing this article:
Orlandi, Nico. Vision, 2017, doi:10.4324/0123456789-W047-3. Routledge Encyclopedia of Philosophy, Taylor and Francis, https://www.rep.routledge.com/articles/thematic/vision/v-3.
Copyright © 1998-2024 Routledge.

Related Articles